首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35528篇
  免费   2868篇
  国内免费   4980篇
  2024年   49篇
  2023年   1554篇
  2022年   1819篇
  2021年   2027篇
  2020年   1973篇
  2019年   1631篇
  2018年   1849篇
  2017年   1769篇
  2016年   1921篇
  2015年   2554篇
  2014年   3421篇
  2013年   3117篇
  2012年   2834篇
  2011年   2604篇
  2010年   2512篇
  2009年   2491篇
  2008年   1570篇
  2007年   1778篇
  2006年   1461篇
  2005年   930篇
  2004年   579篇
  2003年   447篇
  2002年   385篇
  2001年   347篇
  2000年   286篇
  1999年   318篇
  1998年   198篇
  1997年   62篇
  1996年   64篇
  1995年   46篇
  1994年   51篇
  1993年   34篇
  1992年   49篇
  1991年   39篇
  1990年   52篇
  1989年   50篇
  1988年   65篇
  1987年   29篇
  1986年   19篇
  1985年   26篇
  1984年   26篇
  1983年   56篇
  1982年   19篇
  1981年   28篇
  1980年   39篇
  1979年   36篇
  1978年   18篇
  1977年   26篇
  1976年   33篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
51.
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.  相似文献   
52.
Recent advances in obtaining reduced representation libraries for next-generation sequencing permit phylogenomic analysis of species-rich, recently diverged taxa. In this study, we performed sequence capture with homemade PCR-generated probes to study diversification among closely related species in a large insect genus to examine the utility of this method. We reconstructed the phylogeny of Neptis Fabricius, a large and poorly studied nymphalid butterfly genus distributed throughout the Old World. We inferred relationships among 108 Neptis samples using 89 loci totaling up to 84 519 bp per specimen. Our taxon sample focused on Palearctic, Oriental and Australasian species, but included 8 African species and outgroups from 5 related genera. Maximum likelihood and Bayesian analyses yielded identical trees with full support for almost all nodes. We confirmed that Neptis is not monophyletic because Lasippa heliodore (Fabricius) and Phaedyma amphion (Linnaeus) are nested within the genus, and we redefine species groups for Neptis found outside of Africa. The statistical support of our results demonstrates that the probe set we employed is useful for inferring phylogenetic relationships among Neptis species and likely has great value for intrageneric phylogenetic reconstruction of Lepidoptera. Based on our results, we revise the following two taxa: Neptis heliodore comb. rev. and Neptis amphion comb. rev.  相似文献   
53.
The gamma index (γ) is one of the most commonly used metrics for the verification of complex modulated radiotherapy. The mathematical definition of the γ is computationally expensive and various techniques have been reported to speed up the calculation either by mathematically refining the γ or employing various computational techniques. These techniques can cause variation in output with different software implementations. The γ has traditionally been used to compare a 2D measured plane against a 2D or 3D dose distribution. Recently, software algorithm and hardware improvements have led to the possibility of using measured 2D data from commercial detector arrays to reconstruct a 3D-dose distribution and perform a volumetric comparison against the treatment planning system (TPS). A limitation in this approach is that commercial detector arrays have so far been limited by their spatial resolution which may affect the accuracy of the reconstructed 3D volume and subsequently the γ calculation. Additionally, 3D versus 3D γ comparison adds a layer of complication in the calculation of the γ given the increase in the number of calculation points and the result cannot be as easily interpreted in the same way as 2D comparison. This review summarises and highlights the computational challenges of the γ calculation and sheds light on some of these issues by means of a bespoke MATLAB software to demonstrate the impact of interpolation, γ search distance, resolution and 2D and 3D calculations. Finally, a recommendation is made on the minimum information that should be reported when publishing γ results.  相似文献   
54.
Modelling in systems biology often involves the integration of component models into larger composite models. How to do this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional, and of variable strengths. We adapt the waveform relaxation (WR) method for parallel computation of ODEs as a general methodology for computing systems of linked submodels. Four test cases are presented: (i) a cascade of unidirectionally and bidirectionally coupled harmonic oscillators, (ii) deterministic and stochastic simulations of calcium oscillations, (iii) single cell calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv) a multicellular calcium model for a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components, which may be distributed in different computing environments.  相似文献   
55.
In continuation of our study of novel quinolines with anti-inflammatory activity using the Pfitzinger reaction, several new quinoline derivatives were synthesized and tested for their anti-inflammatory and ulcerogenic effect. A docking study on the COX-2 binding pocket was carried out for the target compounds to rationalize the possible selectivity of them against COX-2 enzyme. The most active compounds (5a, 8a and 11a) were found to be superior to celecoxib. Compound 11a demonstrated the highest anti-inflammatory activity as well as the best binding profiles into the COX-2 binding site. Moreover, compounds 9c, 9e, 10a and 11a were devoid of ulcerogenic activity.  相似文献   
56.
57.
58.
59.
β-galactosidase is a commercially important enzyme that was purified from probiotic Pediococcus acidilactici. The enzyme was extracted from cells using sonication and subsequently purified using ammonium sulphate fractionation and successive chromatographies on Sephadex G-100 and Q-Sepharose. The enzyme was purified 3.06-fold up to electrophoretic homogeneity with specific activity of 0.883 U/mg and yield of 28.26%. Molecular mass of β-galactosidase as estimated by SDS-PAGE and MALDI-TOF was 39.07 kDa. The enzyme is a heterodimer with subunit mass of 15.55 and 19.58 kDa. The purified enzyme was optimally active at pH 6.0 and stable in a pH range of 5.8–7.0 with more than 97% activity. Purified β-galactosidase was optimally active at 50 °C. Kinetic parameters Km and Vmax for purified enzyme were 400 µM and 1.22 × 10−1 U respectively. Its inactivation by PMSF confirmed the presence of serine at the active site. The metal ions had different effects on enzyme. Ca2+, Mg2+ and Mn2+ slightly activated the enzyme whereas NH4+, Co2+ and Fe3+ slightly decreased the enzyme activity. Thermodynamic parameters were calculated that suggested that β-galactosidase is less stable at higher temperature (60 °C). Purified enzyme effectively hydrolysed milk lactose with lactose hydrolysing rate of 0.047 min−1 and t1/2 of 14.74 min. This is better than other studied β-galactosidases. Both sonicated Pediococcus acidilactici cells and purified β-galactosidase synthesized galactooligosaccharides (GOSs) as studied by TLC at 30% and 50% of lactose concentration at 47.5 °C. These findings indicate the use of β-galactosidase from probiotic bacteria for producing delactosed milk for lactose intolerant population and prebiotic synthesis. pH and temperature optima and its activation by Ca2+ shows that it is suitable for milk processing.  相似文献   
60.
Phosphatidylinositol 3-kinase-related protein kinases (PIKKs) play critical roles in various metabolic pathways related to cell proliferation and survival. The TELO2-TTI1-TTI2 (TTT) complex has been proposed to recognize newly synthesized PIKKs and to deliver them to the R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) and the heat shock protein 90 chaperone, thereby supporting their folding and assembly. Here, we determined the cryo-EM structure of the TTT complex at an average resolution of 4.2 Å. We describe the full-length structures of TTI1 and TELO2, and a partial structure of TTI2. All three proteins form elongated helical repeat structures. TTI1 provides a platform on which TELO2 and TTI2 bind to its central region and C-terminal end, respectively. The TELO2 C-terminal domain (CTD) is required for the interaction with TTI1 and recruitment of Ataxia-telangiectasia mutated (ATM). The N- and C-terminal segments of TTI1 recognize the FRAP-ATM-TRRAP (FAT) domain and the N-terminal HEAT repeats of ATM, respectively. The TELO2 CTD and TTI1 N- and C-terminal segments are required for cell survival in response to ionizing radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号